FASTER, PLEASE: Researchers find molecular switch to make old brains young again. “As we enter adulthood, our brains become more stable and rigid when compared to that of an adolescent. This is partially due to the triggering of a single gene that slows the rapid change in synaptic connections between neurons, thereby suppressing the high levels of plasticity of an adolescent brain. By monitoring the synapses of living mice for a period of months, the Yale researchers were able to identify the Nogo Receptor 1 gene as the key genetic switch responsible for brain maturation. They found that mice without this gene retained juvenile levels of brain plasticity throughout adulthood and by blocking the function of this gene in old mice, the researchers were able to reset the old brain to adolescent levels of plasticity. This allowed adult mice lacking the Nogo Receptor to recover from brain injury as quickly as adolescent mice, and also saw them master new, complex motor tasks faster than adult mice with the receptor.”