TERRORISTS CAN CUT CABLES BUT THEY CAN’T KNOCK OUT SATELLITES: Global communications are under attack — optical satellite networks can bolster them.
What are the alternatives to undersea cabling? Elon Musk’s Starlink, which now provides coverage to more than 70 countries, including Ukraine (and, according to reports, Russia) has popularized the use of satellite internet. But even though traditional radio frequency satellite-to-ground connectivity like that offered by Starlink is an alternative, and one that supports individual end-user desired speeds, it is limited by physics to speeds well below what is required to provide the reliable, continent-to-continent connectivity currently brought via undersea cables. And though a system like Starlink dramatically reduces reliance on terrestrial infrastructure for end-user connectivity, it still relies on traditional internet infrastructure for data routing between different parts of the world. These, like the fiber-optic cables allegedly attacked by the Houthis, are at risk.
An optical ground station (OGS) network that uses lasers to communicate with satellites, in contrast, can carry data at a rate of about 100 gigabits per second – more than 1,000 times higher than that of the radio-frequency links typically used for satellite communication. The laser beam technology that connects satellite-to-satellite and ground-to-space stations is now mature, and has the speed to be a reliable and resilient alternative to traditional undersea cable connectivity, even at a time of conflict.
OGS networks also offer greater geographical flexibility. While cable-based networks inherently must be tied to the physical route and endpoints of that cable, OGS networks can rely on a mesh satellite network to be established in geopolitically stable and accessible locations, close to ground infrastructure for lower latency and less vulnerability. And free space optical communication also has the major advantage of being very hard to intercept or detect.
Nanny-statists might be hardest hit.